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Abstract

The Vortex Induced Vibration (VIV) of an elastically mounted
transversely rotating sphere is studied numerically. The sphere
is constrained to oscillate orthogonal to the plane made by the
direction of the freestream and the axis of sphere rotation. The
sphere motion was modelled by a spring-mass system, while
the flow was modelled using the incompressible Navier-Stokes
equations. The coupled fluid-structure system was solved with
the finite-volume based CFD package OpenFOAM by using
a newly developed solver. Here, the Navier-Stokes equations
were solved in a non-inertial frame centred on the sphere. The
effect of the sphere rotation on the VIV was studied at Reynolds
number, Re = 300, the density ratio between solid and fluid was
m∗ = 3.8197, and the non-dimensional rotation rate, α, was
varied between 0 and 1.5. In addition, the reduced velocity,
U∗, was varied between 3.5 and 11 to investigate the oscilla-
tion amplitude response. Without rotation, the sphere oscilla-
tion was found to be synchronised with the vortex shedding fre-
quency, with maximum oscillation amplitude of approximately
0.4 diameters. Two hairpin type vortex streets were observed
in the synchronisation regime. With the symmetry breaking in-
troduced by the forced rotation, the oscillation amplitude de-
creased and the synchronisation regime was narrowed. Further-
more, VIV was suppressed completely for α > 1.

Introduction

Fluid-Structure Interaction (FSI) has been an important research
topic in fluid dynamics for many years. When a fluid flows past
a solid structure, a large-amplitude fluctuating pressure force
can be created near the solid body due to the formation and sub-
sequent shedding of vortices into the wake. These vortices can
induce structural vibration (in this case Vortex Induced Vibra-
tion or VIV), which may increase the fatigue damage or some-
times even the failure of structures. A large number of exper-
imental and numerical studies have been undertaken to under-
stand the fundamentals of VIV (for a summary see [8, 10, 12]).
Cylindrical structures were used mostly in those studies, despite
the fact that there are numerous applications involving other
body shapes including spherical bodies.

Recently, the nature of VIV of a sphere began to be revealed
once Williamson [11] experimentally found that the sphere os-
cillates remarkably at a transverse saturation amplitude of close
to two diameters peak to peak. He recognised that plotting
the amplitude response versus reduced velocity (U∗ = U/ fnD,
where U is the free stream velocity, fn is the natural frequency
of the system, and D is the sphere diameter), was more suitable
for interpreting and classifying the behaviour than using the am-
plitude response versus the Reynolds number. He observed that
there were two different modes of oscillation, namely mode
I and mode II. These two modes appeared within the veloc-
ity regime U∗ ∼ 5–10, and the body oscillation frequency, f ,
was close to the static body vortex shedding frequency, fvo
( fvo/ f ∼ 1), which clearly indicates that these vibrations are
induced from the vortex shedding behind the sphere. In addi-
tion to these two modes of vibration, Jauvtis et al. [3] observed
another mode of vibration (mode III), which appeared within

the reduced velocity range U∗ ∼ 20–40. Aside from these ex-
perimental studies, a few numerical studies have examined the
VIV of a sphere at low Reynolds numbers [1, 9].

The influence of rotation on the motion of a sphere has been
studied for centuries. Early research studies carried out by Ben-
jamin Robinson in 1742 observed that a sphere experiences a
transverse force (‘Magnus force’) when it propagates with a
transverse rotation. Heinrich Gustav Magnus demonstrated that
the rotational motion of the sphere is responsible for this trans-
verse force. Later, researchers found that the magnitude of this
force increases with the rotation rate, α (= ωD/2U , where ω is
the sphere angular velocity). In more recent studies, Giacobello
et al. [2] and Kim [5] investigated the effects of transverse ro-
tation on the wake behind a sphere and on the forces exerted on
the sphere at Re= 100, 250, 300, for α≤ 1.2. They found that at
Re = 100, the axisymmetric flow that appeared for no rotation
became planar symmetric with a double-threaded wake in the
presence of rotation. At Re = 250 and 300, the flow underwent
a series of different transitions between steadiness and unsteadi-
ness as the rotation rate was increased. Their studies also re-
vealed that the drag coefficient, Cd = Fd/(0.5ρUπ(D/2)2), and
the lift coefficient, Cl =Fl/(0.5ρUπ(D/2)2), increased with the
rotation rate for all three Reynolds numbers considered, where
Fd is the drag force, Fl is the lift force, and ρ is the density of
the fluid.

Despite the fact that rotation greatly influences the motion of a
sphere, to the authors’ knowledge, no experimental or numer-
ical studies have reported on the flow-induced vibration of a
rotating sphere. Therefore, in the present work, effects of trans-
verse rotation on the vortex induced vibration of a sphere are
investigated by examining the sphere displacement, forces ex-
erted on the sphere and wake structures behind the sphere at
Re = 300 for rotation rate, α, = 0–1.5, and reduced velocity,
U∗, = 3.5–11. The structure of this paper is organised as fol-
lows: the next section describes the numerical methods used to-
gether with validation studies; the sphere response to VIV and
wake structures are presented in the results section, followed by
a conclusion.

Numerical Methods

Problem Set-up

A uniform flow (in the x direction with magnitude U) past a
transversely rotating (axis of rotation = −z, angular velocity
= ω), elastically mounted (free to translate on y axis) sphere
of diameter D was studied numerically using the CFD package,
OpenFOAM. A cubic domain with a side length of 100D was
chosen for the computational domain with the sphere at its cen-
tre (see figure 1).

A non-deformable mesh was chosen for the fluid domain to im-
prove the efficiency of solving the couple fluid-solid system.
Fluid flow was modelled in a reference frame attached to the
centre of the sphere. The motion of the reference frame was
taken into the account by updating the velocity boundary condi-
tions at all outer boundaries except the outlet at each time step.



The boundary conditions were chosen as shown in figure 1. At
the sphere surface, no slip and no penetration boundary condi-
tions were applied together with a rotating wall velocity.
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Figure 1: Schematic of the computational domain and bound-
ary conditions: uuu - fluid velocity vector, p - fluid pressure, n
- outward unit normal vector, D - sphere diameter, ẏyysss - sphere
velocity vector, ω sphere angular velocity.

Governing Equations

The reference frame of the fluid is non-inertial since it accel-
erates according to the sphere motion. Thus, the momentum
equation needs to be adjusted accordingly. This can be done by
adding the acceleration of the sphere to the momentum equation
on the right, acting as a fictitious force in the opposite direction.
The sphere motion was assumed to behave as a spring-mass
system and the fluid was assumed incompressible and viscous.
The coupled fluid-solid system can be described by the Navier-
Stokes equations, given in equations (1) and (2), together with
the equation governing the motion of the sphere in equation (3).

∂u
∂t

= −(u ·∇)u − ∇p + ∇ ·ν∇u − ÿyysss, (1)

∇ ·u = 0 (2)

m ÿyysss + k yyysss = fl (3)

Here, u = u(x,y,z,t) is the velocity vector field, p is the scalar
pressure field, ν is the kinematic viscosity, yyysss is the sphere dis-
placement vector, ÿyysss is the sphere acceleration vector, m is the
mass of the sphere, k is the structural spring constant, and fl is
the flow-induced force vector on the sphere due to pressure and
viscous shear forces. Note that yyysss, ÿyysss, and fl are vectors with
zero x and z components (since the sphere motion was restricted
to the y direction).

A new solver (namely vivicoFoam) was developed, based on the
‘icoFoam’ solver for laminar flows, to solve the coupled system
defined by the above equations. This solver is employed with a
predictor-corrector method that iterates until the fluid force and
solid acceleration converge within given error bounds.

Validation Studies

The flow past a stationary and transversely rotating sphere
were studied using the ‘icoFoam’ solver at Re = 300 and ro-
tation rates, α = 0, 0.5 and 1. Calculated values for the time-
averaged drag coefficient, C̄d , time-averaged lift coefficient, C̄l ,
and Strouhal number, St, are compared with other studies in

Study α C̄d C̄l St

Present 0 0.665 0.070 0.137

Kim et al. [6] 0 0.657 0.067 0.137

Johnson and Patel [4] 0 0.656 0.069 0.137

Present 0.5 0.820 0.473 -

Giacobello et al. [2] 0.5 0.867 0.472 -

Present 1 0.958 0.615 0.421

Kim [5] 1 0.940 0.600 0.421

Giacobello et al. [2] 1 0.921 0.607 0.428

Table 1: Comparison of computed time-averaged drag coeffi-
cient, C̄d , time-averaged lift coefficient, C̄l , and Strouhal num-
ber, St, at Re = 300 and α = 0, 0.5, and 1 with other numerical
studies.

table 1. For both the stationary sphere and the transversely ro-
tating sphere, the present results are in good agreement with the
reported literature [4, 6, 2, 5].

To validate the numerical code (vivicoFoam solver) developed
for the VIV simulations, a series of simulations were conducted
with parameters chosen from [7]. The mass ratio was set to
m∗ = 10 and damping ratio to ζ = 0.01 (in this case, the cylin-
der displacement was modelled by a spring-mass-damper sys-
tem). The Reynolds number is Re = 200 and the reduced ve-
locity range is from U∗ = 3 to 7.5. Figure 2 compares our re-
sults for maximum oscillation amplitude, A′max; peak lift coef-
ficient, C′l,max; frequency of the oscillation f ∗ = f/ fn; and av-
erage phase angle between lift force and cylinder displacement,
φ, with results from Leontini et al. [7]: the results we obtained
are almost identical, with minor differences probably due to the
slightly different blockage ratios. This study provides valida-
tion for the new solver.

Results

A series of simulations were conducted on flow past an elas-
tically mounted (on the y axis), transversely rotating (in the
−z direction) sphere at Reynolds number Re = 300, mass ratio
m∗ = 3.8197, rotation rates α = 0–1.5, and reduced velocities
U∗ = 3.5–11. The Reynolds number of the flow was prescribed
through the kinematic viscosity in equation (1) (ν = DU/Re)
and the reduced velocity was prescribed through the spring con-
stant in the solid motion equation (k = 4mπ2/U∗2).

Sphere Response

The non-dimensional sphere displacement, A, is defined to be
the y component of the solid displacement vector normalised by
the sphere diameter (A = yyysss · (0 1 0)/D). The sphere response
curves in terms of A are shown in figure 3: (a) time averaged
sphere displacement, Ā; (b) maximum oscillation amplitude,
A′max; (c) frequency of oscillation, f ∗ = f/ fn; at Re = 300,
m∗ = 3.1897, for the reduced velocity range U∗ = 3.5–11 at
each of the rotation rates considered. As can be seen from fig-
ure 3 (a), the mean displacement, Ā, was increased with the
rotation rate up to α = 1 due to Magnus force, and this was
more prominent as the reduced velocity increased. However, as
α increased from 1 to 1.5, Ā did not increase further, instead it
slightly decreased. At α = 0, Ā was zero at the reduced velocity
range U∗= 5.5–10, as expected. Figure 3 (b) shows that at those
U∗ values and α = 0, the sphere oscillated greatly with max-
imum oscillation amplitude of approximately 0.4D. Further-
more, the sphere oscillation frequency was synchronised with
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Figure 2: Response of an elastically mounted cylinder as a func-
tion of reduced velocity: Re = 200, m∗ = 10, ζ = 0.01. (a)
maximum oscillation amplitude, A′max; (b) peak lift coefficient,
C′l,max; (c) frequency of the oscillation f ∗ = f/ fn; (d) average
phase angle between lift force and cylinder displacement.

the system’s natural frequency (figure 3 (c)), which indicates
this is a Vortex Induced Vibration response. Interestingly, when
the sphere had imposed on it a forced rotation, the maximum
oscillation amplitude decreased with α and it was completely
suppressed at α = 1.5. Moreover, the synchronization regime
narrowed with increasing α. Vortex shedding frequencies at
α = 0.2, 0.5 and 1 were also synchronized with the natural fre-
quency, as can be seen from figure 3 (c)). Therefore, sphere
oscillations at those rotation rates are clearly due to VIV.

Force Measurements

The variation of the time-averaged drag coefficient, C̄d , and the
lift coefficient, C̄l , with U∗ at each α considered are given in
figures 4 (a) and (b), respectively. The dashed lines in figure 4
refer to C̄d and C̄l calculated with flow past a rigidly mounted
and transversely rotating sphere at each α. For rigidly mounted
sphere cases, C̄d increased with α for all values in the range
while C̄l increased up to α = 1 and then decreased slightly. The
pattern of variation of C̄l with α is consistent with the pattern
of variation of Ā with α. For elastically mounted sphere cases,
in the synchronisation regime, C̄d increased from the nominal
value, with the increments reducing with increasing α (figure 4
(a)). A similar trend can be seen in C̄l as well, where C̄l de-
creased in the synchronisation regime from the nominal value,
again with the decrements reducing with increasing α (figure 4
(b)). At α = 1.5, neither C̄d nor C̄l varied from the nominal
value. This is presumably due to the suppression of vortex shed-
ding at this rotation rate.

Wake Structures

Figure 5 shows the wakes structures in the synchronisation
regime (at U∗ = 6) at each rotation rate considered. At α = 0,
two streets of hairpin-type vortex loops were observed. This
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Figure 3: Response of an elastically mounted (on y axis) ro-
tating (on −z direction) sphere as a function of reduced veloc-
ity at the rotation rates α = 0, 0.2, 0.5, 1, and 1.5: Re = 300,
m∗ = 3.1897, (a) time-averaged non-dimensional sphere dis-
placement, Ā; (b) maximum oscillation amplitude, A′max; (c) os-
cillation frequency normalised by the system natural frequency,
f ∗ = f/ fn.

wake structure is identical to the hairpin type wake observed by
Behara [1] on VIV of a sphere with 3DOF at Re = 300.

As α increased from 0, the wake was deflected downward (−y
direction) due to Magnus effect. In addition, this deflection
was more prominent as α increased. The equal strength vortex
streets observed at α = 0 became uneven with the sphere rota-
tion. The lower vortex street became stronger than the upper
vortex street with increasing α (see figure 5). This unevenness
of the strength of the vortex streets is responsible for the de-
crease of the amplitude response with α. At α = 1, the upper
vortex street is obscured and the vortex loops on the lower street
near the sphere strongly resemble the vortex structures observed
by Giacobello [2] and Kim [5] in their studies of the flow past a
transversely rotating sphere at Re = 300 and α = 1. At α = 1.5,
a double threaded steady wake was observed at each U∗. This
shows clear evidence for VIV suppression.
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Figure 4: Time-averaged (a) drag coefficient, C̄d ; (b) lift co-
efficient, as a function of reduced velocity, U∗ for α = 0, 0.2,
0.5, 1, and 1.5. Dashed lines represent the values of C̄d and C̄l
calculated with a rigidly mounted sphere at each α.
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Figure 5: Instantaneous vortical structures (Iso-surfaces of Q =
0.001 in x-y plane) of vortex induced vibration of a transversely
rotating sphere at Re = 300, m∗ = 3.8197, U∗ = 6, for α = 0,
0.2, 0.5, 1, and 1.5.

Conclusions

The effect of transverse rotation on the vortex induced vibration
of a sphere was studied at Reynolds number Re = 300, mass
ratio m∗ = 3.8197, for rotation rates 0–1.5. For no rotation, the
sphere oscillated with a maximum oscillation amplitude of ap-
proximately 0.4D by synchronising with its natural frequency
in the reduced velocity regime U∗ = 5.5–11. As the rotation
rate increased from 0, the oscillation amplitude decreased and
the synchronisation regime narrowed. Once the rotation rate
reached 1.5, the oscillation was completely suppressed. Two
antisymmetric hairpin-type vortex trails were shed behind the
sphere under no rotation. As the wake deflected into the down-
ward direction (-y direction) under imposed rotation, the vortex
loops become stronger in the lower trail than the vortex loops
in the upper trail. This symmetry breaking is responsible for

the decrease in amplitude response and the narrowing of the
synchronisation regime. With these observations, we can con-
clude that VIV persists at small rotation rates, but that the al-
ternation/suppression of vortex shedding caused by the Magnus
effect as the rotation rate is increased, does in fact lead to sup-
pression of VIV at higher rotation rates, in spite of the freedom
of the sphere to oscillate.
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